Function Estimation Using Data-Adaptive Kernel Smoothers—How Much Smoothing?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function Estimation Using Data Adaptive Kernel Smoothers - How Much Smoothing?

We consider a common problem in physics: How to estimate a smooth function given noisy measurements. We assume that the unknown signal is measured at N different times, {ti: i = 1, . . . N} and that the measurements, {yi}, have been contaminated by additive noise. Thus the measurements satisfy yi = g(ti) + i, where g(t) is the unknown signal and i are random errors. For simplicity, we assume th...

متن کامل

Estimation and Comparison of Fractile Graphs Using Kernel Smoothing Techniques

The concept of Fractile Graphical Analysis (FGA) was introduced by Prasanta Chandra Mahalanobis (see Mahalanobis, 1960). It is one of the earliest nonparametric regression techniques to compare two regression functions for two bivariate populations (X, Y ). This method is particularly useful for comparing two regression functions where the covariate (X) for the two populations are not necessari...

متن کامل

On adaptive smoothing in kernel discriminant analysis

One popular application of kernel density estimation is in kernel discriminant analysis, where kernel estimates of population densities are plugged in the Bayes rule to develop a nonparametric classifier. Performance of these kernel density estimates and that of the corresponding classifier depend on the values of associated smoothing parameters commonly known as the bandwidths. Bandwidths that...

متن کامل

Adaptive kernel density estimation

This insert describes the module akdensity. akdensity extends the official kdensity that estimates density functions by the kernel method. The extensions are of two types: akdensity allows the use of an “adaptive kernel” approach with varying, rather than fixed, bandwidths; and akdensity estimates pointwise variability bands around the estimated density functions.

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers in Physics

سال: 1994

ISSN: 0894-1866

DOI: 10.1063/1.4823316